Singular and maximal radon transforms: Analysis and geometry

نویسندگان

  • Michael Christ
  • Alexander Nagel
  • Elias M Stein
  • Stephen Wainger
چکیده

Part 2. Geometric theory 8. Curvature: Introduction 8.1. Three notions of curvature 8.2. Theorems 8.3. Examples 9. Curvature: Some details 9.1. The exponential representation 9.2. Diffeomorphism invariance 9.3. Curvature condition (CY ) 9.4. Two lemmas 9.5. Double fibration formulation 10. Equivalence of curvature conditions 10.1. Invariant submanifolds and deficient Lie algebras 10.2. Vanishing Jacobians 10.3. Construction of invariant submanifolds

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Radon Transforms and Applications to Ergodic Theory

We prove L boundedness of certain non-translation-invariant discrete maximal Radon transforms and discrete singular Radon transforms. We also prove maximal, pointwise, and L ergodic theorems for certain families of non-commuting operators.

متن کامل

Singular Radon Transforms and Maximal Functions under Convexity Assumptions

We prove variable coefficient analogues of results in [5] on Hilbert transforms and maximal functions along convex curves in the plane.

متن کامل

A T(1) Theorem for Singular Radon Transforms

The purpose of this paper is to extend and clarify the methods of the papers [G1] and [G2] by using the methods of [G3], incorporating ideas from Carnot-Caratheodory geometry such as those of the fundamental paper [NSW]. We will thereby prove an analogue for singular Radon transforms to the T (1) theorem of David and Journe [DJ]. As in [G1] and [G2], we will associate a singular integral operat...

متن کامل

Sparse Bounds for a Prototypical Singular Radon Transform

We use a variant of the technique in [Lac17a] to give sparse L(log(L)) bounds for a class of model singular and maximal Radon transforms.

متن کامل

Discrete Analogues of Singular Radon Transforms

The purpose of this paper is to describe recent results we have obtained in finding discrete analogues of the theory of singular integrals on curves, or more generally of "singular Radon transforms," at least in the translation-invariant case. Our theorems are related to estimates for certain exponential sums that arise in number theory; they are also connected with Bourgain's recent maximal er...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999